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Energy localization and delocalization in a nonlinear chain on a substrate
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The dynamics of a linear chain of atoms with a central heavy atom is shown to be significantly affected
by the presence of an external periodic potential representing a substrate. The system exhibits several
dynamical phases, some of which are consequences of the existence of the substrate. The phases differ in
the degree of energy localization and in other dynamical properties. It is shown that, unlike in a chain
that is not subject to an external potential, energy localization is possible for heavy to light mass ratios
that are of order one. Possible chemical applications are briefly mentioned.

PACS number(s): 05.45.+b, 05.60.+w, 82.20.Rp, 03.20.+i

The phenomenon of energy localization in nonlinear
systems is of intrinsic interest as well as of applicability in
various fields of science and engineering (e.g., vibrations
of large structures). In the realm of chemical physics in-
tramolecular vibrational redistribution (IVR) has re-
ceived a great deal of attention both as a basic in-
tramolecular process and as a possible means to control
intramolecular reactions. The aim in controlled in-
tramolecular reactions is to keep a bond excited (a local-
ized vibrational excitation) long enough, e.g., with
respect to Rice-Ramsberger-Kassel-Marcus [1] lifetimes
to allow for bond selective chemistry [2]. Recently some
evidence for possible bond selectivity has been presented
[3]. As mentioned, the problem of energy localization is
of rather general nature; the results below are convenient-
ly described in the language of the dynamics of a linear
molecule. IVR in such molecules was studied almost ex-
clusively in the gas phase. The consequences of placing a
molecule in an external potential which may represent a
substrate form the subject of the present study.

The pioneering work of Fermi, Pasta, and Ulam [4]
demonstrated that a system of coupled nonlinear oscilla-
tors need not be ergodic. A large body of research fol-
lowed this observation [5]. An important application is
the problem of spreading of vibrational energy in mole-
cules [6-10]. A significant result in the latter domain is
due to Lopez and Marcus (LM [11]) who studied the dy-
namics of energy transfer in a linear chain composed of a
small number of coupled “atoms,” all of which, with the
exception of the central “heavy atom,” were identical. A
small initial energy imparted to the leftmost atom was
shown to result in an eventual average (over time) equali-
ty of the energy on both sides of the heavy atom whereas
in a range of high enough initial energies (imparted to
that atom)—very small energy transfer to the right side
was observed. The transition to energy localization in
LM-like systems has been studied only when the heavy to
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light atom mass ratio is relatively large. When the chain
resides on a substrate, some major qualitative as well as
quantitative changes in the dynamics occur. In this pa-
per, we present a numerical and analytical study of the
role of an external potential (the substrate) on the energy
transfer along a chain. As the initial energy supplied to
the chain is tuned one observes four regimes: complete
transfer (I), almost no transfer (II), chaos and transfer
(III), and dissociation or diffusion of the chain (IV). The
first transition, between (I) and (II) can be mapped on the
discrete nonlinear Schrédinger equation [12-15].

Consider the following (dimensionless) equation of
motion of an odd number, N, of atoms, interacting by
Morse potentials and residing on a “substrate:”
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Here &; are the coordinates of the atoms normalized by
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the periodicity of the substrate, a; « is the ratio of the
mass of the ith atom to that of the any light atom [i.e.,
k(N +1)/2=k,k;=1 for i#*(N +1)/2], B is a dimen-
sionless interaction strength parameter and ¥ is a dimen-
sionless measure of the strength of the potential. Define
the left-side energy as

(N+1)/2 |
E;= 3 1&+1[1—cos(27E;)]
i=1
(N+D2-1
+ 3 B{exp[—zﬁ(§i+l_§i)]
i=1
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with a similar definition of the right-side energy, Ej.
Clearly, the total energy E; +Eg +1k&ly ), is con-
served. When the amplitudes of the vibrations are not
too large, Egs. (1) can be simplified [16] by omitting
fourth order terms in the £;’s and nonlinear terms in
& +1),2 (since the amplitude of vibration of the heavy
atom is very small [16]). A multiple scale expansion
method [16] can be used to show that the amplitude cor-
responding to &y, is O(€?) while the other ampli-
tudes are O(€). This simplification describes properly the
transition from the ‘“normal” mode to the “local” mode
behavior and it is corroborated by numerical simulations
of Egs. (1). For instance, for the N =3 chain one obtains

§1+QZ§1+a2§%+a3§?=y§2 s (3a)
E+(Q2+y)6=y(£,+E) , (3b)
§3+QZ§3—a2§§+a3§§=y§2 . (3c)

Numerical results for N >3 demonstrate that the essen-
tial qualitative features obtained for N =3 hold at least
up to N =15 and that Egs. (3) and their generalization to
large N describe properly the first transition. As men-
tioned, the validity of the simplification leading to Eqgs.
(3) can be assessed in the framework of a multiple scale
expansion [16]. In deriving Eqgs. (3) we have defined
V=0’+y, a,=3yB, a;=1yf—lw§, and wj=27"
The latter frequency represents the effect of the substrate
and it has a major role in controlling the energy transfer.
Note that a; is negative for small values of 8%, whereas
a, is always positive. The multiple scale expansion tech-
nique [16] and other methods all produce the same re-
duced equations of motion from Eqgs. (3). A simple way
to obtain these equations is to assume the following an-
satz:

&1=a(7)exp(1Qt)+a*(7T)exp(—Qt) , (4a)
E=b(1)exp(tQt)+b*(7)exp(—1Qt) , (4b)
&y=c(T)exp(tQt)+c*(r)exp(—iQt) . (4c)

Here 7=t /k, i.e., 7 is a “long” time scale and 1/Q is a
“short” one and x* denotes the complex conjugate of x.
Upon substituting this ansatz into the equation of
motion, Egs. (3), and reading off the leading contributions
corresponding to the frequency () one obtains [assuming

again that b(7), which corresponds to the heavy atom, is
a slow function of 7]:

2Qa=hlal’a+gla+c), (5a)
2Qé=h|c|*c+gla+c), (5b)

where h=(4a3/Q%)—3a; and g=72/(—kQ*+Q%+7y).
Define |a|*+|c|>*=E. It is easy to see that E is a con-
stant of motion of Egs. (5). These equations constitute a
particular case of the well known self-trapping equation,
which has been widely studied, e.g., in Refs. [12-14].
Define the amplitudes 4 and C by a= A exp[ —u(g
+hE)x] and ¢=C exp[ —i(g +hE)x] where x =7/2Q.
This transformation is similar to those invoked in
Refs. [12-14]. Clearly, E=|A|>+|C|>*=const. Next
define the parametrization: A =R cos(®)exp(td)
and C=R sin(®exp(ty). Using these definitions it fol-
lows from Eqgs. (5) that the phase difference y=¢—1 and
the angle u =20 satisfy the equations:

X, =€cos(u)+cos(x)cot(p) , (6a)

p, =sin(x) , (6)

where y=2gy,e=E/E_,, and the critical energy is
defined by E,=—2g/h>0. A detailed analysis of the
consequences of Egs. (6) is presented elsewhere [16]. Fol-
lowing this analysis, the chain of atoms undergoes a
dynamical phase transition at e=1, which alters the ex-
tent of energy transfer from one side of the chain to the
other. The transition may be realized only for an ap-
propriate set of initial conditions. Here we discuss only
the case which corresponds to the LM initial conditions
x=m/2, and ®=0, i.e., the initial state in which all
atoms assume their equilibrium positions and only the
leftmost atom has nonvanishing kinetic energy. This
solution can be obtained from Egs. (6) by assuming that y
is a function of p at all times. A straightforward
manipulation then yields [for x(0)=w/2 and
p(0)=0] cosy=—(€/2)sin(u) and Z,+(€*/4 )sin(z)=0,
where z =2, which is the well known equation for a pen-
dulum. We wish to reiterate that other initial conditions
do not correspond to this simplification. This equation
(for the pendulum) is known to possess two kinds of solu-
tions. Given the above initial conditions the solution is a
rotation for € <2. In this case p is unbounded and there
is clearly complete energy transfer. When € > 2 the solu-
tion is a vibration and p is bounded. In the latter case
only partial energy transfer occurs.

The transition energy at which there is a transition be-
tween the two kinds of solutions, and which corresponds
to €=2, is E=2E,, i, —4Q,/h=—4y*Q*/[h(—kQ?
+Q%+7)]. The latter relation defines a critical mass ra-
tio k., below which the transition cannot occur:
k.=1+y/Q2% Recall that Q’=w3+y, where 3
represents the effect of the substrate. In the absence of a
substrate, i.e., when @y =0, the critical energy is given by
2E,=4y?/h(—k+2). It is easy to check that
E?/E,—w} as wy— =, i.c., the presence of substrate de-
creases the value of the critical energy above which there
is localization. This conclusion is of possible practical
importance since it means that the substrate weakens the
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FIG. 1. Power spectra of the displacements of (a) the left-
most atom and (b) the heavy atom for N = 3. The other param-
eters are v, =0.45, k=5, y=5, and B=1. Note the small fre-
quency Aw in the spectra.
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FIG. 2. Single atom kinetic energies versus v, (see text) for
N=3. Squares: the leftmost atom; crosses: heavy atom. The
other parameters are k=5, y =5, and B=1.

condition of the heavy to light atom mass ratio for energy
localization to occur: in practice this ratio does not have
to be much larger than unity. The aforementioned con-
clusion holds for N > 3 as well.

Next we present some results of numerical simulations
of Egs. (1). Figure (1) presents the power spectra corre-
sponding to £, and &, below the transition point E.. The
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FIG. 3. The energy transfer coefficient =E /E; for N=35
as a function of (a) v, with y =15, B=1, and k=5. (b) k with
y=15, B=1,and vy=1.8. (c) y with k=5, B=1, and v,=1.8.
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initial conditions are the same as in LM. As expected on
the basis of linear theory and weakly nonlinear analysis,
the power spectra exhibit three major peaks correspond-
ing to the linear eigenmodes: ®, and w; correspond to
the symmetric and antisymmetric modes, respectively,
and o, corresponds to low frequency motion of the heavy
atom. The modulation frequency Aw=w;—w, satisfies

AoxV1—¢ for e<1, while, for €>1,A0 <V e¥—1. At
the transition point Aw=0, as expected on the basis of
the theory presented above.

Besides the effect of lowering the transition energy, the
substrate gives rise to rich dynamical behavior above the
transition point. As the energy is raised above the transi-
tion point [for the set of parameters given in Figs. (1)] one
observes three dynamical phases, while from the point of
view of the energy transfer alone, there are only two
phases. Following the transition at 2E_, the amplitude of
the motion of the heavy atom is relatively small and the
dependence of the corresponding frequency w, on E is
very weak. At vy=1.1-1.5 (here v, is the initial velocity
of the leftmost atom, i.e., vy=1/2E,) the ratio ,/w,
equals 2 and beyond this resonant range these two fre-
quencies strongly depend on E, yet they seem to be com-
mensurate. The amplitude of motion of the heavy atom
is enhanced by a resonant mechanism. Figure (2) displays
the transition to resonance in the plot of the kinetic ener-
gies of the leftmost and heavy atoms, respectively, versus
vo. A further transition at vy=~1.7 gives rise to chaotic
dynamics (III) and complete energy transfer is restored.
When the energy is raised even further the chain dissoci-
ates or performs diffusive motion on the substrate (IV).

The dependence of the degree of energy transfer (on
several parameters), as measured by n=Eg/E;, is
demonstrated for the case N=35 in Fig. (3). Figure (3a)
exhibits two transitions. The first transition leads the
chain from its delocalized state (9=1) to a localized one
(p<<1). The second transition brings about chaotic
behavior and restores the complete energy transfer
(n=1). The transition from the delocalized phase to the
localized one is also evident in Figs. (3b), (3c). Notice
that in the latter plots there is no second transition, since
for the corresponding values of the additional parameters
[vo and ¥ for Fig. (3b) and v, and « for Fig. (3c)] there is
no chaotic state. Figure (4) demonstrates that the case
N=9(n versus v,) exhibits the same qualitative proper-
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FIG. 4. The energy transfer coefficient n=Eg /E; for N=9
as a function of vy with y =5, B=1, and k=5.

ties as those corresponding to N =3 and 5.

The fact that the symmetric and antisymmetric solu-
tions correspond to close eigenfrequencies gives rise to a
low frequency mode Aw which plays a major role in the
energy transfer process. Indeed we have checked that a
N =4 atomic chain containing a heavy atom, which can-
not have a symmetric mode, does not allow for energy
transfer unless the energy is high enough to allow for
chaotic dynamics. Numerical studies of larger symmetric
chains (N=5-15) reveal, for low excitation energies, a
(quasi)linear spectrum containing N major modes, which
can be divided into pairs, corresponding to close frequen-
cies, consisting of a symmetric and an antisymmetric
mode each, and an additional slow mode which corre-
sponds to the vibration of the heavy atom.

In summary, we have demonstrated that the coupling
to the substrate is responsible for the arising of distinct
features in the dynamics of the chain. The presence of
the substrate helps to keep the energy localized. It de-
creases the minimal mass of the “heavy” atom required
for localization and it decreases the transition energy.
These conclusions suggest the importance of introducing
a substrate in studying IVR processes in molecules. The
theoretical framework presented in this work is clearly
classical, though, we believe, the results should be
relevant to real molecules.
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